
National Aeronautics and
Space Administration

NASA Technical Memorandum 107028

Turbulent Fluid Motion VI—
Turbulence, Nonlinear Dynamics,
and Deterministic Chaos

Robert G. Deissler
Lewis Research Center
Cleveland, Ohio

September 1996



i

PREFACE

Researchers have been active in serious studies of turbulence for more than a century. Today, as it was a century
ago, turbulence is ubiquitous. But although it is still an active field of research, there is no general deductive theory
of strong turbulence.

The literature on turbulence is now far too voluminous for anything like a full presentation to be given in a
moderately-sized volume. Rather it will be attempted here to give a coherent account of one line of development.
Part of this has been given in abbreviated form in Chapter 7 of Handbook of Turbulence, Volume 1 (Plenum, 1977).
In particular, the scope of the work, which was somewhat limited by our inability to solve the fundamental nonlinear
equations, has been considerably increased by numerical solutions. Moreover, applications of dynamical systems
theory in conjunction with numerical solutions have resulted in, among other things, a sharper characterization of
turbulence and a deliniation of routes to turbulence.

Throughout the book the emphasis will be on understanding the physical processes in turbulent flow. This will be
done to a large extent by obtaining and interpreting analytical or numerical solutions of the equations of fluid
motion. No attempt will be made to either emphasize or avoid the use of mathematical analysis. Since most of the
material is given in some detail, the student or research worker with a modest knowledge of fluid mechanics should
not find the text particularly hard to follow. Some familiarity with Cartesian-tensor notation and Fourier analysis
may be helpful, although background material in those subjects will be given.

Although turbulence, as it occurs, is more often strong than weak, it appears that much can be learned about its
nature by considering weak or moderately weak turbulence, as is often done here. In general, the same processes
occur in moderately weak turbulence as occur at much higher Reynolds numbers; the differences are quantitative
rather than qualitative. The crux of the matter might therefore be accessible through low and moderate Reynolds-
number studies.

The basis of the present account of turbulence is the Navier-Stokes and other continuum equations for fluids. It is
hoped that the book will show how those equations can act as a unifying thread for such an account.

Some introductory material on fluid turbulence is presented in chapter I. This includes discussions and illustra-
tions of what turbulence is, and how, why, and where turbulence occurs. Then, in chapter II, some of the mathemati-
cal apparatus used for the representation and study of turbulence is developed.

A derivation of the continuum equations used for the analysis of turbulence is given in chapter III. These equa-
tions include the continuity equation, the Navier-Stokes equations, and the heat-transfer or energy equation. An
experimental justification for using a continuum approach for the study of turbulence is also given.

Ensemble, time, and space averages as applied to turbulent quantities are discussed in chapter IV, and pertinent
properties of the averages are obtained. Those properties, together with Reynolds decomposition, are used to derive
the averaged equations of motion and the one- and two-point moment or correlation equations. The terms in the
various equations are interpreted. The closure problem of the averaged equations is discussed, and possible closure
schemes are considered. Those schemes usually require an input of supplemental information, unless the averaged
equations are closed by calculating their terms by a numerical solution of the original unaveraged equations. The
law of the wall for velocities and for temperatures, the velocity- and temperature-defect laws, and the logarithmic
laws for velocities and for temperatures are derived. Various notions of randomness and their relation to turbulence
are considered in the light of modern ergodic theory.

Background material on Fourier analysis and on the spectral form of the continuum equations, both averaged
and unaveraged, are given in chapter V. The equations are applied to a number of cases of homogeneous turbulence
with and without mean gradients. Some turbulent solutions of the full unaveraged continuum equations are obtained
numerically. Closure of the averaged equations by specification of sufficient random initial conditions is considered.
The gap problem (the problem of bridging the gap between the infinite amount of data required to specify an initial
turbulence and the finite amount generally available) is discussed. Then a solution for the evolution of all of the
quantities used to specify the initial turbulence is obtained. Spectral transfer of turbulent activity between scales of
motion is studied in some detail. The effects of mean shear, heat transfer, normal strain, and buoyancy are included
in the analyses.
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Finally, in chapter VI the unaveraged Navier-Stokes equations are used numerically in conjuction with tools and
concepts from nonlinear dynamics, including time series, phase portraits, Poincaré sections, Liapunov exponents,
power spectra, and strange attractors. Initially neighboring solutions for a low Reynolds-number fully developed
turbulence are compared, where the turbulence is sustained by a nonrandom time-independent external force. By
reducing the Reynolds number (forcing), several nonturbulent solutions are also obtained and contrasted with the
turbulent ones.

I should like to thank F.B. Molls for his work on the calculations, and R.J. Deissler, E. Reshotko, I. Greber,
Y. Kamotani, N. Mhuiris, and F. McCaughan for helpful discussions in connection with the studies in chapter VI.
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SUMMARY

Several turbulent and nonturbulent solutions of the Navier-Stokes equations are obtained. The unaveraged equa-
tions are used numerically in conjunction with tools and concepts from nonlinear dynamics, including time series,
phase portraits, Poincaré sections. Liapunov exponents, power spectra, and strange attractors.

Initially neighboring solutions for a low Reynolds-number fully developed turbulence are compared. The turbu-
lence is sustained by a nonrandom time-independent external force. The solutions, on the average, separate exponen-
tially with time, having a positive Liapunov exponent. Thus, the turbulence is characterized as chaotic.

In a search for solutions which contrast with the turbulent ones, the Reynolds number (or strength of the forcing)
is reduced. Several qualitatively different flows are noted. These are, respectively, fully chaotic, complex periodic,
weakly chaotic, simple periodic, and fixed-point. Of these, we classify only the fully chaotic flows as turbulent.
Those flows have both a positive Liapunov exponent and Poincaré sections without pattern. By contrast, the weakly
chaotic flows, although having positive Liapunov exponents, have some pattern in their Poincaré sections. The
fixed-point and periodic flows are nonturbulent, since turbulence, as generally understood, is both time-dependent
and aperiodic.

INTRODUCTION

As is apparent from the preceding chapters, fluid turbulence is a many-faceted phenomenon. It has been charac-
terized as random, nonlinear, multiscaled, dissipative, as having a negative velocity-derivative skewness factor, as
transferring energy (mainly) to small-scale motions, as being dissipated by small-scale motions, as tending toward
isotropy, and as having an infinite number of components or degrees of freedom. Those descriptions appear in what
might now be called the classical or statistical theory of turbulence (refs. 1 to 5). That theory is based mainly on
averaged or moment equations obtained from the Navier-Stokes equations.

It was mentioned in the introductory remarks of chapter IV that the idea of using averaged equations, rather than
the unaveraged Navier-Stokes equations directly in an analysis, has been adopted in the past mainly because it was
thought that averaged, smoothly varying quantities should be easier to deal with than the haphazard motions occur-
ring in the unaveraged equations. However because of the nonlinearity of the Navier-Stokes equations, the averaging
process introduces the closure problem (more unknowns than equations (chapter IV), so that it is not clear that aver-
aging is advantageous as far as getting solutions is concerned.1 The averaged or moment equations are, however,
useful (if not necessary) for discussing the physical processes occurring in turbulence (see chapters IV and V).

In recent years there have been attempts to utilize concepts from the theory of nonlinear dynamical systems in the
analysis of turbulence (refs. 6 to 12). There, in contrast to the statistical theory, the emphasis is on unaveraged,
rather than on averaged equations. The use of unaveraged equations in which the velocities vary in a complicated
way is made feasible by the advent of high speed computers. By using ideas from nonlinear dynamics one might (as
further evidence that turbulence is a many-faceted phenomenon) characterize turbulence as chaotic although deter-
ministic, as aperiodic, as having sensitive dependence on initial conditions, as having time series without pattern, as
having a positive Liapunov exponent, as having a phase portrait without pattern, as having Poincaré sections without
pattern, as lying on a strange or chaotic attractor, and as having continuous time and spatial spectra.

1Recall that parts of chapters IV and V were devoted to numerical solutions of the unaveraged equations.
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Both the statistical (classical) theory and the newer nonlinear dynamics theory provide valid ways of looking at
turbulence. The latter furnishes a number of new tools for probing the nature of turbulence (e.g., Liapunov expo-
nents, Poincaré sections, etc.). But as yet it does not seem to provide a means of discussing such well-known aspects
of turbulence as spectral and directional transfer of energy. Those aspects can, however, be considered within the
framework of conventional turbulence theory (see chapter V).

Here we study the nature of Navier-Stokes turbulence (the turbulence obtained from solutions of the Navier-
Stokes equations) by using concepts from nonlinear dynamics. Sensitive dependence on initial conditions and
strange (chaotic) attractors are included. These are shown to occur in turbulence by obtaining and interpreting
(mainly numerical) solutions of the Navier-Stokes equations.

In order to give a sharper characterization of turbulence, turbulent solutions are contrasted with periodic,
quasiperiodic, and fixed-point solutions. Turbulent systems are also compared with those considered in the kinetic
theory of gases. There is a certain suddenness inherent in turbulent mixing (section 4.3.2.3), as there is in molecular
mixing by collision of gas particles.

Before investigating turbulence, we will consider a low-order system. We will see that solutions of that system
have similarities to high (infinite)-order turbulence.

6.1 A LOW-ORDER NONLINEAR SYSTEM

An important (and surprising) result from nonlinear dynamics studies is that highly complex or chaotic motion
can be obtained in systems with only a few (but not less than three) modes or degrees of freedom.2 The best known
low-order example is the Lorenz system (ref. 12):
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where t is the time and x, y, z are the three degrees of freedom of the system.
The variable (mode) y in equation (6-1) is plotted against time t in figure 6-1, where b = 1, r = 26, and s = 3. The

initial conditions are given by x = 0, y = 1, and z = 0 at t = 0. The quantity plotted in figure 6-1 has a random appear-
ance, in spite of the fact that the system has only three degrees of freedom. In fact, the flow in figure 6-1 is some-
what like that in figure 1-3, where a component of turbulence for a particular experimental flow is plotted against
time; both flows have a random appearance. This is perhaps unexpected, since turbulence is described by partial
differential equations (the Navier-Stokes equations) and thus has (theoretically) an infinite number of degrees of
freedom. The random appearance of turbulence has been ascribed to the infinite number of degrees of freedom
(refs. 13 to 15), but it now appears that as few as three are sufficient.

Comparison of figures 6-1(a) and (b) shows the effect of a small change in initial condition. A change in initial y
of 0.1 percent produces a very large change in y at times beyond the indicated time of breakaway from the unper-
turbed flow, although there is no perceptible change at earlier times. The flow thus appears to be sensitively depen-
dent on initial conditions—a necessary (although not sufficient) condition for a flow to be turbulent. This is another
indication of the similarity of the low-order flow in figure 6-1 to a turbulent flow.

Finally, by comparing figures 6-1(b) and (c) we investigate the effect of time increment ∆t in the numerical solu-
tion of the Lorenz system on the evolution of y. An improved Euler method (ref. 16) was used in the numerical solu-
tion. Increasing ∆t from 0.002 in figures 6-1(b) to 0.01 in figure 6-1(c) (with everything else held constant) has no
perceptible effect on the evolution of y for times smaller than the breakaway time indicated in figure 6-1(c). Thus,
the numerical calculations in the two graphs (figs. 6-1(b) and (c)) are accurate in the usual sense. But for times

2It turns out that at least three modes are necessary if a chaotic solution is to be unique (ref. 7). If say only two
modes (or dimensions in phase or state space) were present, a chaotic solution in phase space would intersect itself
and thus not be unique.
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greater than the breakaway time the evolutions are completely different, apparently because of the inherent instabil-
ity or chaoticity of the system for the parameters shown. Thus, the effect of increasing ∆t is qualitatively similar to
that of giving a small perturbation to the initial condition.

Following this brief study of a low-order chaotic system we go now to the Navier-Stokes system (ref. 17). As in
the preceding chapters the Navier-Stokes equations are used to describe turbulence in fluids.

6.2 BASIC EQUATIONS AND A LONG-TERM TURBULENT SOLUTION WITH STEADY FORCING

The incompressible Navier-Stokes equations, on which the present study is based, are
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The subscripts can have the values 1, 2, or 3, and a repeated subscript in a term indicates a summation, with the sub-
script successively taking on the values 1, 2, and 3. The quantity ui is an instantaneous velocity component, xi is a
space coordinate, t is the time, ρ is the density, ν is the kinematic viscosity, σ is the instantaneous (mechanical) pres-
sure, and Fi is a time-independent forcing term, or external force, which is taken as some fraction χ of the negative
of the initial viscous term at t = 0. That is,
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The fraction χ  controls the value of the asymptotic Reynolds number of the flow. Equations (6-2) and (6-3) are
respectively the same as equations (3-19) and (3-21) if the forcing term Fi is replaced by the body force gi. The ini-
tial nonrandom ui in equation (6-4) are given at t = 0 by
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k is a quantity that fixes the initial Reynolds number at t = 0, and x0 is one over the magnitude of an initial wave-
number component. Through equation (6-4), x0 is also one over the magnitude of a wavenumber component of the
forcing term Fi. Equations (6-5) and (6-6) satisfy continuity, and equations (6-2) to (6-4) insure that continuity is
maintained. Moreover equations (6-4) to (6-6) give local values of Fi which are symmetric with respect to 90° rota-
tions and translations of 2πx0. Then we find numerically that

u u u a1
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2

3
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at all times, where the overbars indicate values averaged over space. After the initial transients have died out, the
averages may also be taken over time, and the inexact equalities in equation (6-7(a)) become equalities.
Equation (6-7a) then becomes
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where the double bars indicate averages over space and time. The boundary conditions are periodic with a period of
2πx0. From equation (6-4) and continuity, the last term in equation (6-3) is zero for our system.

Equation (6-2) is a nonlinear dissipative equation for the evolution of the vector ui. Although a Navier-Stokes
fluid is linear (stress proportional to strain rate), a nonlinearity appears in equation (6-2) as an effect of inertia. The
equation is autonomous, since time does not appear explicitly on the right side, and deterministic since there are no
random coefficients. Note that the equation would not be autonomous if the forcing term Fi were time-dependent.
Equation (6-2), although three-dimensional in physical space, is infinite-dimensional in phase (or state) space, since
it is a partial differential equation. (The number of dimensions of the phase space of our system is the number of ui's
required to specify the velocity field at a particular time. The pressure is not specified; it is calculated from equation
(6-3).) The equation can be converted to an infinite system of ordinary differential equations by, for instance, intro-
ducing finite-difference representations of spatial derivatives (and letting grid spacing approach 0), or by taking the
spatial Fourier transform of the equation. Because it is dissipative, the infinite system can be represented by a finite
system of equations (ref. 11). There should be a viscous cutoff, below which motion becomes unimportant as the
scale of the motion decreases. Thus, a numerical solution should be possible, at least for low Reynolds numbers.
Equation (6-2), together with equation (6-3) for the pressure, equations (6-4) to (6-6) for the forcing term,
equations (6-5) and (6-6) for the initial conditions, and periodic boundary conditions, can be considered a nonlinear,
deterministic, autonomous, dissipative, dynamical system. The system is deterministic, since there are no random
elements in equations (6-2) to (6-6) or in the boundary conditions.

The numerical method used for the solution of equations (6-2) to (6-6) has been given in reference 18 and in sec-
tion 5.3.2.6. A cubical computational grid (323 grid points), fourth-order spatial differencing, and third-order
 predictor-corrector time differencing are used. In order to obtain numerical stability for the highest asymptotic
Reynolds number (13.3), it was necessary to use about 50 time steps in each small fluctuation of velocity, so that the
fluctuations with respect to time are well resolved indeed. The spatial resolution is also good and will be discussed
later, in connection with figure 6-6.

It follows from equations (6-4) to (6-6) that the nonrandom initial condition on ui applied at t = 0 is proportional
to the steady forcing term Fi. The quantity (ui)t=0, or Fi, on an xj – xk plane through the numerical grid center is plot-
ted in figure 6-2. Figure 6-3 shows the magnitude of the vector (ui)t=0 or Fi. A high degree of spatial symmetry of
(ui)t=0 and of Fi is apparent from these plots. Note that as a result of the symmetry, the subscript i can designate any
component of the vectors, and that the xj – xk plane can be any plane through the numerical grid center parallel to
the grid axes. That is, i,j, and k = 1,2, or 3; j≠k. Moreover, the symmetry allows the development of symmetric tur-
bulence in a box, where the box has periodic walls.

Results for the evolution of u1
2

1 2





/
 for χ in equation (6-4) equal to 1 (asymptotic Reynolds number, 13.3) are

given in figure 6-4 (see figure 6-4 for definition of the Reynolds number). The value of k in equation (6-6) is 20,

giving an initial Reynolds number at t = 0 of 34.6. The velocities have been divided by u0
2
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, where the 0 again

refers to t = 0. An asymptotic turbulent solution is obtained for t* > 5. (The asterisk on t indicates that it has been

nondimensionalized by x0 and ν.)

A rather remarkable feature of turbulent flow is that a time-dependent haphazard flow can result when the applied
exciting forces are steady (e.g., in a fully developed turbulent pipe flow with a steady applied pressure gradient).
Figure 6-4 shows that the Navier-Stokes turbulence calculated here exhibits this feature, since a steady forcing term
produces an apparently haphazard time-dependent motion. This is evidently the result of a kind of instability of the
nonlinear Navier-Stokes equations except at very low Reynolds numbers, since initially neighboring solutions sepa-
rate exponentially with time. That is, those solutions are chaotic (ref. 9). It will later be seen that our steady forcing
term can also produce time-dependent nonturbulent flow.

It should be mentioned that the symmetry present in the initial conditions (equations (6-5) and (6-6)) which, for
instance, causes the three local velocity components to be equal for x1 = x2 = x3 at t = 0, has been destroyed before
t* = 5, apparently by roundoff errors. This symmetry-breaking for local values must indeed occur in order for true
turbulence to develop, and in fact the fluctuations eventually die out if the symmetry remains. Here the initial fluc-
tuations were not strong enough to destroy the symmetry before the fluctuations become too small to be seen on the



5

u1 curve. The symmetry-breaking apparently occurred on the flat portion of the curve by the accumulation of
roundoff errors. For higher initial Reynolds numbers (not shown) the initial fluctuations were strong enough to
break the local symmetry earlier, and the flat portion of the u1 curve was absent.

The mean skewness factor S of the velocity derivative of our Navier-Stokes turbulence in figure 6-4 is calculated
to be
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where the skewness factor is averaged over time after the powers of the velocity derivative have been averaged over
space. This value is close to those obtained experimentally for a variety of simple turbulent flows (ref. 19), where
the Reynolds numbers of the experiments were in the same range as that for the solution in figure 6-4.

Instantaneous (unaveraged) terms in the Navier-Stokes equation (equation (6-2)) for i = 1 at the numerical grid
center are plotted in figure 6-5. These include the nonlinear convective term –∂(uiuk)/∂xk, the steady forcing term Fi,
the viscous term ν∂2ui/∂xk∂xk, and the pressure term –(1/ρ)∂σ/∂xi.

For the asymptotic or developed region (for t* > 5) the viscous term is of the same order of magnitude as the
steady forcing term. This is reasonable since the forcing term replenishes the energy lost by viscous action. On the
other hand the nonlinear convective and pressure terms are much larger. (The pressure term is nonlinear through
equation (6-3).) It may seem surprising that a small forcing term can produce large convective and pressure terms;
apparently those terms are amplified by the instability of the Navier-Stokes flow at the Reynolds number in
figure 6-4. The tendency is even greater at higher Reynolds numbers (not shown). If we compare the nonlinear con-
vective and pressure terms with the viscous term rather than with the forcing term, the trend is not surprising, since
it is well-known that the nonlinear terms become much greater than the viscous as the Reynolds number of a turbu-
lent flow increases. As was mentioned before, the forcing term is of the same order of magnitude as the viscous.

Calculated spatial variations of velocity fluctuations are plotted in figure 6-6. Although the Reynolds number is
low, there is some tendency for velocity gradients to become large in several nonadjacent regions, thus indicating
the hydrodynamic instability of the flow and, in addition, the spatial intermittency of the flow in the smaller eddies
(ref. 1). (Note that steep gradients are associated with small eddies or large wavenumbers (ref. 20).) This tendency
to form steep gradients is, of course, a well-known property of turbulent flows, and evidently occurs as an effect of
the nonlinear terms in the Navier-Stokes equations. In order to give an idea of the numerical resolution obtained,
grid points are indicated by symbols; all of the scales of motion are well resolved.

The number of degrees of freedom or modes used in the present solution (323 grid points times three directional
velocity components) was compared with the criteria for sufficient determining modes obtained by Constantin et al
(ref. 11). Both on the basis of the ratio of the largest to smallest length scale and on the basis of Reynolds number,
the number of determining modes used in the present solution was considerably larger than required for a qualita-
tively correct solution. So according to the criteria of reference 11, there are plenty of determining modes for a
qualitatively correct solution. That reference does not address the problem of a quantitatively correct solution.

After initial transients have died out (for t* > 5), the flow considered in figures 6-2 to 6-8 lies on a strange
attractor. This is because, as shown in reference 9, the flow exhibits sensitive dependence on initial conditions, and
because the Navier-Stokes equations represent a dissipative system, so that volumes in phase space, on the average,
contract (for large times volumes in phase space approach zero!) (refs. 7, 8 and 21). We have also shown that sensi-
tive dependence on initial conditions occurs for moderately high Reynolds-number decaying turbulence (ref. 22).

As a result of sensitive dependence on initial conditions it appears that one cannot obtain an analytical solution (at
least in the usual sense), and we need not be apologetic about using a numerical solution for turbulent flows. Of
course, one might use averaged, rather than instantaneous equations, but then the closure problem would appear
(more unknowns than equations) (Chapt. IV), so that a deductive solution could not be obtained. (Averaged equa-
tions supposedly would not be chaotic.)

Figure 6-7 shows an instantaneous velocity vector field in the asymptotic (developed) region projected on the
x1 – x2 plane through the numerical grid center. The time is t* = 13.28. A few instantaneous streamlines have also
been sketched in. The flow in figure 6-7 appears to be composed of randomly placed jets and whirls; other projec-
tions of the velocity vector field have a similar appearance, but with jets and whirls at different locations.

A three-dimensional representation of an instantaneous velocity field in the asymptotic region is given in
figure 6-8. The magnitude of the velocity vector |u| is plotted on the x1 – x2 plane through the numerical grid center.
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The time is again t* = 13.28. Figure 6-8, as well as figure 6-7, illustrates the chaotic appearance of the velocity field.
It is evident that the symmetry present in the nonrandom initial conditions in figures 6-2 and 6-3 has been broken for
the developed flow in figures 6-7 and 6-8.

6.3 SOME COMPUTER ANIMATIONS OF A TURBULENT FLOW

Figures 6-2 to 6-8 give a good idea of the static appearance of the low Reynolds-number turbulent flow. In order
to illustrate the dynamic evolution of the same flow, we have made some computer animations and put them on the
Internet. They can be accessed via the Worldwide Web by visiting the following address: http://www.lerc.nasa.gov/
WWW/GVIS/Deissler.html

In particular, the animation designated “Long-term solution for turbulent velocity” appears to give a perspective
not readily obtained from a static representation.

6.4 SOME TURBULENT AND NONTURBULENT NAVIER-STOKES FLOWS

In this section (except for one of the flows considered for illustrative purposes in figure 6-9) we will use as initial
conditions the spatially chaotic conditions in figures 6-7 and 6-8. These correspond to the flow in figure 6-4 at
t* = 13.28. As shown in reference 9, that flow is chaotic (the Liapunov characteristic exponent is positive). The use
of chaotic initial conditions tends to assure that as many modes as possible are excited at a given Reynolds number.
A chaotic initial condition, in fact, contains all modes; that is, it has a continuous spectrum.

The effectiveness of chaotic initial conditions in exciting unstable modes is illustrated in figure 6-9. The Reynolds
numbers of both the nonchaotic initial conditions and of the asymptotic flow in figure 6-9(a) are higher than those in
figure 6-9(b), where the initial conditions are chaotic. Since the asymptotic flow in figure 6-9(a) is time-independent
and that in figure 6-9(b) is chaotic, one sees that the character of these asymptotic flows is controlled by whether or
not the initial conditions are chaotic, rather than by the Reynolds numbers. Of course if the initial Reynolds number
is high enough, as in figure 6-4, the asymptotic flow may be chaotic even if the initial conditions are regular. At any
rate it is clear from figure 6-9 that the use of chaotic initial conditions tends to make the asymptotic flow chaotic,
when that is possible. It tends to insure that unstable modes are excited. But it will be seen that, depending on the
final Reynolds number, a variety of asymptotic flows can be obtained from chaotic initial conditions.

The procedure for the calculations in the remainder of this section is this: The initial conditions, which are spa-
tially chaotic, are obtained from the chaotic flow in figure 6-4 for t* = 13.28. (See also figures 6-7 and 6-8.) Using
that initial condition, the asymptotic Reynolds number for each flow is fixed by setting the value of χ in the forcing
term in equation (6-4).

6.4.1 Time Series

Time series for seven different low Reynolds-number flows are shown in figures 6-10 and 6-4. In figure 6-10(a),
where the asymptotic Reynolds number Rea is 4.78 (χ = 0.2), the asymptotic (long-time) flow is time-independent.
This happens although the initial conditions are chaotic. Thus, the asymptotic Reynolds number here appears not to
be high enough to sustain a time-dependent chaotic or periodic flow; no modes are active. In phase space this type of
flow is a fixed point, as will be discussed in the next section.

For an asymptotic Reynolds number of 6.24 (χ = 0.3) the longer-term solution (shown in fig. 6-10(b)) is periodic
in time. The curve has a rather simple shape, although it is not as simple as a sine wave. As discussed in the next
section, this is a limit cycle in phase space.

A more complicated periodic flow is plotted in figure 6-10(c), where the asymptotic Reynolds number has been
increased to 6.67 (χ = 0.330). The period is about twice that of the flow in figure 6-10(b). Thus, the solutions in
figures 6-10(b) and (c) could be the first two members of a period-doubling sequence in a route to chaos (ref. 7).
Further characterization of the flows in figures 6-10(b) and (c) will be given in the next section.

The asymptotic flow in figure 6-10(d), which is for a Reynolds number of 6.72 ((χ = 0.338), has some parts which
appear to repeat, but it is not periodic. Even after a very long time we were unable to obtain a complete repeating
cycle. In order to see if roundoff errors could produce that result, we increased those errors by several orders of
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magnitude, but the results were unchanged. Figure 6-10(d) by itself does not provide enough information to satisfac-
torily characterize the flow in that figure. After we have calculated phase portraits, Poincaré sections, and Liapunov
exponents, we will be in a better position to characterize the flow.

Consider next the asymptotic flow in figure 6-10(e), where the Reynolds number is 6.89 (χ = 0.35). At first glance
this flow might appear chaotic because of its complexity. It is, however, periodic, although the velocity variation
within each period is quite complicated. This complex periodic flow has a period close to four times that of the
simple periodic flow in figure 6-10(b). But it is not a third member of the period-doubling sequence of which the
solutions in figures 6-10(b) and (c) appear to be the first two members. That is so because of the existence of the
aperiodic flow in figure 6-10(d); it breaks up the sequence. Further discussion of the periodic flow in figure 6-10(e)
will be given in following sections.

Finally, by increasing the asymptotic Reynolds number to 6.93 (χ = 0.4) we get in figure 6-10(f) what appears to
be a chaotic flow, since it has no apparent pattern. The flow has an appearance similar to that in figure 6-4 (χ = 1)
which was already shown to be chaotic (ref. 9).

In summarizing the information obtained from the time series for the various asymptotic flows, we note that the
only flows that could be identified with reasonable certainty from the time series alone were the time-independent
flow (fig. 6-10(a)) and the periodic flows in figures 6-10(b) and (e). We will be able to get a better understanding
even of those flows from representations yet to be considered.

6.4.2 Phase Portraits

The term “phase portrait” as used here refers to a solution trajectory in the phase space of a flow. Since one can-
not readily visualize a space of more than three dimensions, our representations will be projections of the higher-
dimensional portraits onto two-dimensional planes or three-dimensional volumes in phase space.

The trajectory in figure 6-11(a), which corresponds to the time series in figure 6-10(a), shows an initial transient
which ends at a stable fixed point in phase space. The arrow indicates the direction of increasing time (the direction
of motion of the phase point). Since the velocity components at all points in physical space are time-independent for
large times, the phase point occupies the same position in phase space for all large times. The projection in
figure 6-11(a) is onto a u1(π,π,π) – u2(π,π,π) plane; other projections are similar. This is the simplest example of an
attractor, the trajectory in phase space being attracted to a single stable point. Once the phase point arrives there it
does not leave. As mentioned earlier, volumes in phase space contract, on the average, in a dissipative system
(refs. 7 and 21). In this case the volumes shrink down to a zero-volume zero-dimensional point. Motion in physical
space does not of course cease but becomes time-independent.
Consider next the periodic phase portrait corresponding to the time series in figure 6-10(b) (see figs. 6-11(b) to

(h)). Figures 6-11(b) and (c) show trajectories projected onto a u1 (9π/8, 21π/16, 23π/16) – u1(π,π,π) plane. Com-
parison of the unconverged orbit in figure 6-11(b) with the converged one in figure 6-11(c) shows that the
unconverged curve wobbles around (on both sides of ) the converged curve until it finally settles down on the latter.
Thus, the trajectory is attracted to a stable limit cycle or periodic attractor. The fact that the phase point traces the
same curve over and over (after convergence) confirms the periodicity of the orbit.

This formation of the stable limit cycle appears to be an example of order being born out of chaos (self-
organization), since the flow was initially chaotic. For that to occur, it is only necessary to reduce the Reynolds
number (or forcing) below its initial value by an appropriate amount.3

The contraction of volumes in phase space for a dissipative system again manifests itself here. Whereas in
figure 6-11(a) the volumes shrink down to a zero-volume zero-dimensional point, for the periodic attractor consid-
ered here they shrink down to a zero-volume one-dimensional closed curve. The coordinate axis used to plot the
curve will have the same shape as the curve itself. Thus, although the curve itself is one-dimensional, the one-
dimensional coordinate system, or the basis function, may require many orthogonal dimensions to represent it. The
curve is, strictly speaking, one-dimensional only when used with its own optimum one-dimensional coordinate sys-
tem or basis function. Although the curve will not cross itself in its optimum coordinate system, it may cross when
projected onto a two-dimensional orthogonal coordinate system (see fig. 6-11(d)).

3There may be an analogy here with the formation of the universe according to the presently accepted big-bang theory. According to that
theory ordered structures (e.g., atoms, galaxies, stars, etc.) arose from an initial formless chaos (radiation). The structures could form when a
parameter with an initially enormous magnitude, say the temperature, had decreased sufficiently. A nontechnical account of the theory is given in
reference 23.



8

Additional projections of the periodic attractor onto planes in phase space are shown in figures 6-11(e) and (f) in
order to give an idea of the variety of curve shapes that can be obtained. Note, that in figure 6-11(f), part of the sym-
metry present for t = 0 (fig. 6-2) has returned. (This symmetry is absent in the fully chaotic flows.) Projections of the
orbit onto three-dimensional volumes in phase space are plotted in figures 6-11(g) and (h).

Projections of the period-two trajectory (corresponding to the time series in fig. 6-10(c) are plotted in fig-
ures 6-11(i) and (j). Comparison of those plots with the period-one plots in figures 6-11(c) and (d) shows that the
single-cycle flow (with one large loop) has undergone a bifurcation to a two-cycle flow so that period doubling has
occurred.

Phase-portrait projections corresponding to the time series in figure 6-10(d) are plotted in figures 6-11(k) to (q).
This portrait differs qualitatively from the others shown so far, since it tends to fill a region of space in most of the
two-dimensional projections. It was found that the longer the running time, the blacker is the portrait for the projec-
tions in figures 6-11(k) to (p). Thus, the trajectory is clearly not periodic, since if it were, it would be a closed curve
in all projections. If it were quasiperiodic (with two independent frequencies), the phase portrait would lie on a
torus. Figure 6-11(m) resembles a torus in some respects, but is more complicated. In particular, it has a knob in the
central region.

The projections in figures 6-11(ø), (n), and (o) appear to show a sheet-like structure. Whereas for the periodic
attractor of figures 6-11(c) to (h), phase-space volumes shrink down to a zero-volume line, here they appear to
shrink down to a zero-volume sheet (or sheets). The notch in the projection in figure 6-11(n) is probably the result
of a superposition of sheets. Sheet-like structures with folds are generic in strange attractors (ref. 7). Since in a
chaotic flow there is stretching in at least one direction in phase space, there must be folding in order to keep the
flow bounded. There appear to be some folds in the projections in figures 6-11(ø), (m), and (o), thus indicating that
chaos is probable. The confused appearance of the trajectories in figures 6-11(k) and (p) is also indicative of chaos.
Further evidence relative to the classification of this hard-to-classify flow will be considered in succeeding sections.

Projections of the periodic trajectory corresponding to the time series in figure 6-10(e) are plotted in
figures 6-11(r) to (t). Initial transients have died out. Because of the very complicated appearance of the trajectory a
cursory look might lead one to guess that it is chaotic (see also figure 6-10(e)). It is not chaotic, however, since it is
not space filling. No matter how long a time the solution is continued, there is no blackening of the phase portrait;
the same closed curve is traced over and over, indicating periodicity of the orbit. Since initial deviations or transients
present in the flow (not shown) die out as the flow is attracted to a limiting curve, the long-term solution trajectory is
a periodic attractor or limit cycle. The flow appears to have a remarkable memory in being able to repeat such a
complicated orbit. The fact that such a complicated curve can be retraced is also indicative of the accuracy of the
numerical method. As was the case for the simpler periodic attractors considered earlier, the present periodic
attractor, although much more complicated, shows the shrinking of phase-space volumes to a zero volume one-
dimensional curve. The discussion given there concerning the sense in which the curve is one-dimensional also
applies here.

Increasing the Reynolds numbers to those in figures 6-10(f) and 6-4 we again get (as for figs. 6-11(k) to (o))
space-filling attractors. Projections of these are plotted in figures 6-11(u) to (x). After transients have died out, the
trajectories are attracted to the black regions in the plots. These look like astrophysical black holes. Indeed, these
attractors are similar to black holes in that for large times points cannot leave. A possible difference is that for some-
what earlier times, the phase points can cross over the attractors, leaving them momentarily. However that situation
is temporary. After initial transients have completely died out, the phase points must remain forever on the
attractors. These trajectories appear to be even more chaotic (have less of a pattern) than those in figures 6-11(k) to
(o). However sheets and folding are less apparent than in the attractors for the lower Reynolds number in figures 6-
11(k) to (o), probably because of the higher dimensionality of the attractors for the higher Reynolds numbers. More
will be said about that in section 6.4.7.

6.4.3 Poincaré Sections

Poincaré sections are obtained by plotting the points where the phase point of a trajectory pierces (with increasing
time) one side of a plane in phase space. The resulting plot has a dimension one less than that of the corresponding
phase portrait. The lower-dimensional Poincaré section is sometimes easier to interpret. Here the pierced plane
(Poincaré plane) is taken as a u1(π,π,π) – u2(π,π,π) plane, and points are plotted when u1(9π/8, 21π/16, 23π/16)
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changes from positive to negative or from negative to positive. (Figure 6-11(g) may aid in visualizing the operation,
at least for the simple periodic case).

For the fixed-point attractor in figure 6-11(a) a Poincaré section does not exist, except in a trivial sense, since the
phase point does not pass through a plane as time increases. So we go on to the simple periodic attractor of figures
6-11(c) to (h). For that attractor the Poincaré sections are points. Figure 6-12(a) shows two Poincaré sections, one
for u1 (9π/8, 21π/16, 23π/16) changing from positive to negative and one for that coordinate changing from negative
to positive as the phase point passes through a u1(π,π,π) – u2(π,π,π) plane. (See also fig. 6-11(g) which plots the
three coordinates.) Even after the phase point has pierced the Poincaré plane a large number of times (8 to 10), each
section consists of a single point.

Consider next some Poincaré sections of the phase portrait for figures 6-11(k) to (q) (χ = 0.338). These are plotted
in figures 12(b) and (c). Some portions of the plots appear to be lines; that tends to indicate quasiperiodicity of the
flow (with two independent frequencies). However, in other parts of the plots the points are scattered somewhat
randomly with no apparent pattern; that tends to indicate chaos. Thus, the flow has both chaotic and quasiperiodic
features. It is not periodic because longer running times produce more points on the Poincaré section.

Two Poincaré sections for the complex periodic attractor of figures 11(r) to (t) are plotted in figure 12(d). These
sections are similar to those in figure 12(a), but because of the complexity of the attractor of figures 11(r) to (t), each
section consists of five points instead of one. As was the case for the simpler periodic attractor, the number of points
does not increase with increasing running time.

Finally, in figures 12(e) to (h), we consider Poincaré sections for our two highest Reynolds-number flows (χ = 0.4
and 1). Phase portraits for these flows were considered in figures 11(u) to (x). These Poincaré sections are similar to
those in figures 12(b) and (c) insofar as longer running times produce more plotted points. However they are qualita-
tively different, since there are no regions where the points lie along a curve. They tend to fill a  region of space in
an apparently random fashion; there is no evident pattern.

6.4.4 Liapunov Exponent

The Liapunov characteristic exponent (or largest Liapunov exponent if a spectrum of exponents is considered)
provides a definitive way of determining whether or not a flow is chaotic. A positive Liapunov exponent indicates
sensitive dependence on initial conditions, which in turn is often considered as synonymous with chaoticity.

The method used here to determine the sensitivity of our solutions to small changes in initial conditions, and to
determine Liapunov exponents, is similar to one we used previously (ref. 9). The values of ui at a time after initial
transients have died out are perturbed by small spatially random numbers R, where –10–6 < R < 10–6 or –10–4 < R
< 10–4. The perturbations are applied at each spatial grid point at one time. The distance between the perturbed and
unperturbed solutions at various times is then calculated from

D u x t u x ti perturbed j i unperturbed j
i j
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where i, which can have values from 1 to 3, indicates different directional velocity components, and j, which can go
from 1 to some number M, indicates different points in physical space. Then D represents a distance or norm in a
3M-dimensional space. For M equal to the number of grid points, D is the distance in the phase space of the
discretized system. (Note that the distance D has the dimensions of a velocity.)

In reference 9, D was represented by embedding it in one-, three-, six-, and twelve-dimensional space. It was
found that increasing the embedding dimension from three to twelve had little or no effect on the calculated value of
the Liapunov exponent. Here we adopt six dimensions as giving a sufficiently good representation of D. That is, we
use three velocity components at each of two points in physical space as the dimensions (M = 2).

Thus, embedding the distance between perturbed and unperturbed solutions in a six-dimensional space and plot-

ting log D u0
21 2/





 against dimensionless time, we obtain figures 13(a) to (c) for χ = 0.338, 0.4, and 1. The values

of log D, on the average, increase linearly with time, indicating that D increases exponentially. That is, initially

neighboring solutions diverge exponentially on the average. Thus it appears that we can characterize these three
flows as chaotic.
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The fact that the mean slopes of the distance-evolution curves are constant over a considerable range also allows
us to use our results to obtain an estimate of the Liapunov characteristic exponent. The Liapunov characteristic
exponent σ (for times after initial transients have died out) is defined as (ref. 7)

σ = 
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where the D(t) are values of distance between initially neighboring solutions that might be obtained from
figure 6-13. However, if the values of D were obtained from the wavy curves in figure 6-13, we would have to go to
very large times in order to obtain a reasonable estimate for σ. This would take us out of the region of exponential
growth of D, unless D(0) were very small (probably below the computer noise level). One way of getting around this
difficulty is to use a renormalization procedure (ref. 7).

For our purposes it seems that, since the mean slopes of the distance evolution curves in figure 6-13 are constant
over a considerable range, the best procedure is to replace the wavy curves by straight lines through them. Then
equation (6-10) is replaced by

σ = ( )[ ] − −ln ( ), ( )D D t tm a a 6 11

where the values of Dm and Da are read from the straight line in each figure at times t and ta, respectively. The
straight line in each figure is drawn so that its mean square deviation from the wavy curve is a minimum; this proce-
dure should give a good estimate for σ. The values of dimensionless σ so obtained for figures 6-13(a) to (c) are,
respectively,

x and0
2 0 12 0 35 2 7 6 12/ . , . , . . ( )ν σ( ) ≈ −

The value 2.7 agrees with that obtained for the same flow (but for a different time of perturbation and different
embedding dimension) in reference 9. The Liapunov exponents in equation (6-12) give us a measure of the mean
exponential rate of divergence of two initially neighboring solutions, or of the chaoticity of the flows. The important
point is that σ is positive, indicating that these three flows are chaotic (ref. 7). It is noted that as the Reynolds num-
ber increases σ increases (for constant x0 and ν), or the flows become more chaotic.

Plots of dimensionless D versus t* for our two periodic flows are given in figures 6-13(d) and (e). (Note two lost-
data gaps in the figure 13(e) curve.) These plots are qualitatively different from those for chaotic flows. If they were
not, of course, our method for calculating Liapunov exponents would be in error. Whereas D for chaotic flow in-
creases exponentially (on the average) for about four orders of magnitude until it is of the same order as ui, D for the
periodic flows, on the average, shows no tendency to increase exponentially. Thus the Liapunov exponent does not
show a tendency to be positive, as of course it should not, since the flow is not chaotic. Theoretically the largest
Liapunov exponent, the one associated with perturbations along a trajectory, should be zero for a periodic attractor
(ref. 24).

The following simple argument shows that the largest Liapunov exponent for a limit cycle is zero: A limit cycle is
stable, so the flow must return to the same periodic attractor after a perturbation. That is, the trajectory, a long time
after perturbation, must occupy the same points in phase space as it did before perturbation. So the only possible
difference between the perturbed and unperturbed trajectories is that there may be a phase difference; although the
trajectory, a long time after perturbation, must occupy the same points in phase space as does the unperturbed trajec-
tory, it may do so at different times. A phase difference is allowable because our dynamical system is autonomous;
time does not appear on the right side of equation (6-2). Since the velocity components are all periodic in time, D
will be periodic, as in figure 6-13(f) and (g). There the limit cycle is perturbed along its trajectory by introducing a
small phase difference ∆t; the distance between neighboring solutions is calculated from

D u t t u tphase i j i j
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in place of equation (6-9). Thus the average D over a long time has zero slope, so that for a periodic flow, the largest
Liapunov exponent (associated with perturbations along the trajectory) is zero. Other Liapunov exponents (associ-
ated with perturbations normal to the trajectory) are negative, since the flow is attracted to the limit cycle. Note that
figures 6-13(f) and (g) do not by themselves, without the rest of the above argument, show that the largest Liapunov
exponent is zero. However the wavy curves in figures 6-13(d) and (e) do approach those in figures 6-13 (f) and (g)
respectively for very long times. In particular the wavy-curve shape in figure 6-13(g) is nearly identical with that
near the end of the curve in figure 13(e). So the use of equation (6-13) is a way of producing the asymptotic D’s
immediately when it is known that the asymptotic D’s are the result of a phase difference, or of a perturbation along
the trajectory. The effects of perturbations normal to the trajectory are absent in figures 13(f) and (g).

6.4.5 Ergodic Theory Interpretations

It may be worthwhile to look at our results in the light of modern ergodic theory (see refs. 7, 25, and section
4.1.1). According to that theory there is a hierarchy of random systems (fig. 6-14). At the bottom of the hierarchy are
ergodic systems (those with equivalence of time, space, and ensemble averages); those systems embody the weakest
notion of randomness. The so-called mixing systems (those that approach equilibrium) have a stronger notion of
randomness than do those that are only ergodic, and systems that exhibit sensitive dependence on initial conditions,
or chaoticity, have a stronger notion of randomness than do those that are only ergodic, or only ergodic and mixing.
Mixing implies ergodicity, and chaoticity implies both ergodicity and mixing, but the converse is not true. At the top
of the hierarchy are the most random systems; those that, though deterministic, may appear in a certain sense to be-
have as randomly as the numbers produced by a roulette wheel (Bernoulli systems) (ref. 25).

Recall that both of our flows show sensitive dependence on initial conditions (chaoticity), because of their posi-
tive Liapunov exponents. Thus, according to the hierarchy of randomness, they must both also be ergodic and mix-
ing. The flow for the two higher asymptotic Reynolds numbers (Rea = 6.93 and 13.3), in addition to being chaotic,
mixing, and ergodic, have a Poincaré section without apparent pattern, in contrast to the lower Reynolds-number
flow (Rea = 6.72), where there was pattern in the Poincaré section. (Similar differences were observed in plots
showing projections of the attractors for the two Reynolds numbers onto planes in phase space.) Thus the higher
Reynolds-number flows have a higher degree of randomness than that required for chaoticity, and so are higher in
the randomness hierarchy than is the lower Reynolds-number flow. That is, the higher Reynolds-number flows seem
to have a stronger notion of randomness than chaoticity. In fact, the points on its Poincaré section appear to be
placed about as randomly as the numbers produced by Roulette wheels.

For example, consider two Roulette wheels, one of which produces numbers corresponding to the abscissas of
plotted points, and the other of which produces numbers corresponding to their ordinates. (Of course, one wheel
could alternately be used for abscissas and ordinates). The plot so obtained from the spins of Roulette wheels would
be similar to those in figures 12(e) to (h) (no apparent pattern), so that our higher Reynolds number flows may be
close to a Bernoulli system. A possible explanation for the differences in the randomness exhibited by our two flows
would be that the higher Reynolds-number flow has an attractor of higher dimension (>3) and thus a more confused
(random) appearance.

6.3.5.1 Chaotic versus turbulent flows.—This leads us to a possible distinction between flows which are chaotic
and those which, in addition, might be called turbulent. Perhaps one should reserve the term “turbulent” for flows
which have both a positive Liapunov exponent and Poincaré sections without apparent pattern, as have those for
Reynolds numbers Rea of 6.93 and 13.3. Most flows called turbulent appear to be more random than required for a
flow to be chaotic, although they are certainly chaotic, as well as ergodic and mixing.

Another characteristic which is often given as indicative of turbulence is a negative skewness factor S of the
velocity derivative, where usually –1 < S < 0 (ref. 19). However, for the time-dependent flows considered here, both
turbulent and nonturbulent, the skewness factor did not vary significantly from that given in equation (6-8). Even for
the fixed-point flow (figs. 6-10(a) and 11(a)) the value of S was about –0.25. Thus although a negative S is neces-
sary for the presence of turbulence, it is certainly not a sufficient indicator. A negative S in fact seems to be more an
indicator of nonlinearity than of turbulence. All of the flows here are highly nonlinear.
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6.4.6 Power Spectra

Power spectra give the distribution with frequency of the energy in a flow. We obtain the spectra by computing
the fast Fourier transforms of the time series for the velocity components. The squares of the absolute values of
those transforms are then plotted against dimensionless frequency. The results are given in figure 6-15.

Two types of spectra are indicated—discrete for the periodic flows and continuous for the chaotic ones. However,
the spectra do not appear able to distinguish qualitatively between the weakly chaotic (fig. 6-15(b)) and the fully
chaotic flows (figs. 6-15(d) and (e)). In that respect they are less sensitive indicators than are the Poincaré sections.
If one considers the discrete and continuous spectra separately, then higher frequency components become excited
as the Reynolds number increases (as χ increases). In the case of the discrete spectra, the simple periodic flow
(fig. 6-15(a)) requires only four spectral components to represent u2, whereas the much more complex periodic
flow (fig. 6-15(c)) requires 36 nonnegligible components. In both cases the frequencies of the components are re-
lated to one another as ratios of integers (one fundamental frequency in each case).

6.4.7. Dimensions of the Attractors

As a final characterization of our Navier-Stokes flows, we consider the dimensions of the attractors on which the
flows reside. The dimension of a space gives, in general, the number of quantities required to specify the position of
a point in the space; e.g., one, two, or three coordinates are respectively required to specify a point in a one-, two-, or
three-dimensional physical space. The same applies to an n-dimensional phase space, or to an attractor which is a
portion of the phase space. The attractor is generally of lower dimension than that of the phase space because of the
shrinking of volumes in the phase space of a dissipative system. It is partly this possibility of a decreased dimension
of the attractor, and consequence simplification of the problem (in principle), which makes calculation of dimension
an interesting pursuit. The dimension can be considered the lower bound on the number of essential variables
needed to describe the dynamics of a system (ref. 26). Unfortunately it is usually difficult to obtain reliable estimates
of that quantity.

As mentioned in section 6.4.2, the dimensions of our fixed-point and periodic attractors are respectively zero and
one; a point in any space is zero-dimensional, and a closed curve, no matter how complicated its shape, is one-
dimensional if the optimum coordinate system or basis function is used (see discussion in section 6.4.2).

One might question why more than one spectral component is required in figures 6-15(a) and (c) for the represen-
tation of one-dimensional periodic attractors. However the need for more than one component in those representa-
tions means only that the basis functions used there, sines and cosines, are not optimum for those cases. In the case
of our complex periodic flow (fig. 6-15(c)) it would be necessary to use an extremely complicated basis function for
one-spectral-component representation—most likely a basis function represented numerically rather than by an ana-
lytical function.

We also attempted to calculate the pointwise dimensions of our chaotic or strange attractors (refs. 26 and 27). In
that attempt we have not been able to obtain a long enough time series for the dimension to become independent of
time-series length. Thus, all we can say with certainty is that the dimension must be greater than 2; if it were not,
trajectories for our chaotic flows would cross in phase space. They cannot cross for an autonomous system because
if they did, there would be more than one trajectory for the same conditions (at the point where the trajectories
cross), and the problem would not be deterministic.

One might expect that for our (weakly) chaotic flow the dimension would be only slightly greater than 2 because
apparent folding can be seen in the phase portrait (figs. 11(ø) and (o)); if the attractor were many-dimensional,
stretching and folding would occur in many directions and, because of the resulting confusion, could not be dis-
cerned in a two-dimensional plot. That is apparently what happens for the turbulent flows (figs. 11(u) to (x)). There
the dimension must be significantly greater than 2; stretching and folding, although certainly present, is many-
dimensional, so that the result is a confused appearance of the phase portrait. However, even there the dimension of
the attractor should be limited by the overall shrinkage of volumes in phase space.
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6.5 CONCLUDING REMARKS

Navier-Stokes turbulence is a chaotic phenomenon. Our long-term solutions with steady forcing show that the
calculated turbulence has a positive Liapunov exponent, which in turn means that it is sensitively dependent on ini-
tial conditions.

Turbulence has, for a long time, been assumed to be random (ref. 1), or at least to have the appearance of random-
ness. Sensitive dependence on initial conditions provides an explanation for the occurrence of apparent randomness
in turbulence. But in spite of its random appearance turbulence has a deterministic element, inasmuch as the Navier-
Stokes equations which describe it are fully deterministic. The phrase “deterministic chaos” might therefore provide
a fitting description for turbulence. Although turbulence is time-dependent and random in appearance, our solutions
show that it can form with no time-dependent or random input. This again is a result of sensitive dependence of the
solutions on initial conditions.

It may not, however, be a sufficiently complete description of turbulence to say that it is chaotic. Some of our
low-Reynolds-number flows have a positive Liapunov exponent, and thus are chaotic, but their Poincaré sections
show a pattern in some of their parts. On the other hand, solutions at somewhat higher Reynolds numbers show a
complete lack of pattern. Perhaps we should reserve the term “turbulent” for flows that have a positive Liapunov
exponent and, in addition, have Poincaré sections without pattern. Interpreting our results in the light of modern
ergodic theory, turbulence is more random than required for a system to be chaotic; its randomness approaches that
of a Bernoulli system, an example of which is a Roulette wheel.

Turbulence is also aperiodic or nonperiodic. As examples of flows which contrast with turbulence, we were able
to obtain some periodic and fixed-point solutions. Whereas the fixed-point (in phase space) flows are time-
independent, and the periodic flows are closed curves in phase space (points on Poincaré sections), the turbulent
flows are time-dependent and fill a portion of phase space. The turbulent, periodic, and fixed-point flows are all
attracted to lower-dimensional regions of phase space called attractors. The turbulent flows lie on strange or chaotic
attractors.

Another requirement that is often given for flows to be turbulent is that they have negative velocity-derivative
skewness factors. However, our periodic and fixed-point solutions have skewness factors that do not vary greatly
from those for turbulent flows. A negative skewness factor seems to be more an indication of nonlinearity (all of our
forced flows are highly nonlinear) than of turbulence.
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Figure 6-1.—Evolution of the mode y in the three-mode Lorenz system (eqs. (6-1)).
   Solution obtained numerically by improved Euler method. b = 1, r = 26, s = 3, initial
   x = initial z = 0. (a) Initial y = 1.000, Dt in numerical solution = 0.002. (b) Initial y = 1.001,
   Dt in numerical solution = 0.002. (c) Initial y = 1.001, Dt in numerical solution = 0.01.
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   number component of the forcing term.
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EPILOGUE

Advances in solving the turbulence problem continue to be made along theoretical, computational, and experi-
mental lines. Considerable progress in understanding turbulence mechanisms, particularly spectral energy transfer
and the interaction between energy transfer and dissipation, has been made by using theoretical and computational
methods. Much of the recent activity in turbulence research is related to advances in high-speed computation. For
example, deductive-computational solutions of the unaveraged Navier-Stokes equations are now available, at least
for turbulent flows at low and moderate Reynolds numbers. A Reynolds number higher than those which can be
handled by available computers and computational schemes can, of course, always be picked. However, at least
from a research standpoint, high Reynolds-number turbulence does not differ qualitatively from that at lower
Reynolds numbers; the turbulent energy is just spread out over a wider range of wavenumbers, there being no
bifurcations in going from low to high Reynolds numbers except possibly in the transition region between laminar
and turbulent flow. The mathematical and computational methods appropriate for low and for high Reynolds
numbers may of course differ.

Another area of progress is in the application of nonlinear-dynamics and chaos theory to turbulence research.
Here again the research could not get very far without the use of high-speed computation. Nonlinear-dynamics and
chaos theory has given us a means of interpreting numerical results by providing new investigative tools. Turbu-
lence, while chaotic, is shown to be more random than is required for a chaotic flow.

From an engineering standpoint quantitative results at high Reynolds numbers are required. There, modeling, or
the use of information in addition to that provided by the Navier-Stokes equations still has a place in turbulence
calculations.

Advances in solving the turbulence problem will no doubt continue. For example, faster computers should become
available and make possible turbulent solutions of the unaveraged Navier-Stokes equations at higher Reynolds num-
bers; those solutions could then be interpreted by the use of nonlinear-dynamics and chaos theory. At the same time
advances in the use of modeling in the solution of the averaged Navier-Stokes equations should give engineering
results at possibly still higher Reynolds numbers. Eventually, as still faster computers become available, results
from the two approaches (deductive-computational and modeling) will hopefully merge.
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